A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication
نویسندگان
چکیده
We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm²) than that of conventional dielectrics such as SiO₂. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts.
منابع مشابه
Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.
Printing electronic components on plastic foils with functional liquid inks is an attractive approach for achieving flexible and low-cost circuitry for applications such as bendable displays and large-area sensors. The challenges for printed electronics, however, include characteristically slow switching frequencies and associated high supply voltages, which together impede widespread applicati...
متن کاملAbsorption Based Characterization Method for Fluid Properties Using Electrowetting-on-Dielectric Forces: Modeling and Fabrication
Electrowetting-on-Dielectrics (EWOD) can be used to build a device, where a polar fluid droplet gets actuated between two EWOD electrodes. In our setup, each electrode is located between a laser diode and an oppositely arranged photo diode. In that manner, the presence of a fluid droplet located above one certain electrode can be optically detected by means of this transmission setup. The dropl...
متن کاملAll-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.
Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays...
متن کاملSolution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors.
A solution-based strategy for fabrication of high dielectric constant (κ) nanocomposites for flexible organic field effect transistors (OFETs) has been developed. The nanocomposite was composed of a high-κ polymer, cyanoethyl pullulan (CYELP), and a high-κ nanoparticle, zirconium dioxide (ZrO2). Organic field effect transistors (OFETs) based on neat CYELP exhibited anomalous behavior during dev...
متن کاملFabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens
We present a flexible variable-focus converging microlens actuated by electrowetting on dielectric (EWOD). The microlens is made of two immiscible liquids and a soft polymer, polydimethylsiloxane (PDMS). Parylene intermediate layer is used to produce robust flexible electrode on PDMS. A low-temperature PDMS-compatible fabrication process has been developed to reduce the stress on the lens struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017